Proof of Riemann Hypothesis

نویسنده

  • Matti Pitkänen
چکیده

Hilbert-Polya conjecture and Riemann hypothesis are proven. The construction of Hilbert-Polya operator is inspired by the conviction that Riemann Zeta function is associated with a physical system allowing superconformal transformations as its symmetries. The proof as such is elementary involving only basic facts about the theory of Hilbert space operators and complex analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Riemann Hypothesis

(Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most important unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems ([BRW], [SA])...

متن کامل

On the Theory of Zeta-functions and L-functions

In this thesis we provide a body of knowledge that concerns Riemann zeta-function and its generalizations in a cohesive manner. In particular, we have studied and mentioned some recent results regarding Hurwitz and Lerch functions, as well as Dirichlet’s L-function. We have also investigated some fundamental concepts related to these functions and their universality properties. In addition, we ...

متن کامل

A Direct Proof for Riemann Hypothesis Based on Jacobi Functional Equation and Schwarz Reflection Principle

Using the properties of theta-series and Schwarz reflection principle, a proof for Riemann hypothesis (RH) is directly presented and the first ten nontrivial zeros are easily obtained. From now on RH becomes Riemann Theorem (RT) and all its equivalent results and the consequences assuming RH are true.

متن کامل

A Possible Proof of Riemann Hypothesis

Riemann hypothesis is proven by reducing the vanishing of Riemann Zeta to an orthogonality condition for the eigenfunctions of a nonHermitian operator having the zeros of Riemann Zeta as its eigenvalues. Eigenfunctions are analogous to the so called coherent states and in general not orthogonal to each other. The construction of the operator is inspired by the conviction that Riemann Zeta is as...

متن کامل

A Proof for the Density Hypothesis

The Riemann zeta function ζ(s) is defined by ζ(s) = ∑∞ n=1 1 ns for R(s) > 1 and may be extended to a regular function on the whole complex plane excluding its unique pole at s = 1. The Riemann hypothesis is a conjecture made by Riemann in 1859 asserting that all non-trivial zeros for ζ(s) lie on the line R(s) = 12 , which has a broad application in every branch of mathematics. The density hypo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001